DRCMR Logo 300px Color
 

[EXPIRED] The Capital Region of Copenhagen is looking for a 2-year research assistant in precision brain imaging in Parkinsons's disease

Our team has made major progress in imaging the involvement of the substantia nigra and locus coeruleus in Parkinson´s disease over recent years.

Are you interested to become a part of our team and that continuously pushes the frontiers of precision MRI of the human brain and Parkinson’s disease at 3T and 7T?

Are you eager to work in a dynamic research environment in the Movement Disorders group and to leverage a unique clinical and  MRI infrastructure?

Do you thrive in multi-disciplinary environments where you closely interact with collaborators at the department, but also internationally?
If yes, we would like to see your application.

The Danish Research Centre for Magnetic Resonance (DRCMR) has an open research opportunity for a highly motivated research assistant to conduct cutting-edge research in clinical neuroscience and magnetic resonance imaging.

We are looking for a candidate who will help us acquire and analyze structural and functional MRI data in healthy participants and patients with Parkinson’s disease. You will have the opportunity to collaborate with an interdisciplinary team consisting of M.D.s, psychologists, physiologists, engineers, and basic- and clinical neuroscientists. You will join the Movement Disorders group led by Research Fellow David Meder as well as the ADAPT-PD project group led by Prof. Hartwig Siebner. Here, you will contribute to our efforts to map the changes in functional brain networks in Parkinson’s disease patients. Furthermore, you will aid our continuous work on ultra-high field (7 tesla) imaging of structural changes in midbrain nuclei in different stages of the disease. The employment may lay the foundation for an extension into a PhD position.

About us:

The Danish Research Centre for Magnetic Resonance (DRCMR) is one of the leading research centers for biomedical MRI in Europe (www.drcmr.dk). Our interdisciplinary research is geared to triangulate between MR physics, basic physiology, and clinical research. Approximately 70 researchers from a diverse range of disciplines are currently pursuing basic and clinically applied MR research with a focus on structural, functional, and metabolic MRI of the human brain and its disorders.

Collaboration is key at DRCMR – we do not expect any researcher to be able to do everything alone, but we expect everyone to be interested in sharing knowledge with colleagues.

The DRCMR is embedded in the Department of Radiology and Nuclear Medicine, a large diagnostic imaging department including all biomedical imaging modalities at Copenhagen University Hospital Hvidovre. The hospital also has strong collaborative links with the Technical University of Denmark and is part of the newly established organizational framework, The Technical University Hospital of Greater Copenhagen. DRCMR has close interaction with clinicians and radiologists and a state-of-the-art MR-research infrastructure, which includes a pre-clinical 7T MR scanner, six whole-body MR scanners (one 7T, four 3T and one 1.5T scanners), a hardware workshop and laboratory, a neuropsychology laboratory, an EEG laboratory, and two laboratories for non-invasive brain stimulation.  The 7T is a national research infrastructure, serving internal and external users across Denmark.                                                                                                                                                             

The position:

You will be employed as a research assistant for a two-year period at the Danish Research Centre for Magnetic Resonance with good possibilities of extension.

Your daily tasks will vary according to the flow of the projects, but will mainly be centered around:

  • conducting functional MRI experiments with healthy participants and patients with Parkinson’s disease at 3T
  • conducting structural MRI experiments with healthy participants and patients with Parkinson’s disease at 7T
  • analyzing functional and structural MRI and behavioral data
  • engaging in teaching, knowledge dissemination, and publication of results in international, recognized scientific journals

The ideal candidate

  • You hold a MSc degree in medicine, neuroscience, biomedical engineering or a related field.
  • You have excellent written and interpersonal communication skills.
  • You enjoy being part of a multidisciplinary and international research team where flexibility, coordination skills and helping each other out are key comptencies.

A major advantage would be experience in any of the following:

  • experience with MR data acquisition and analysis
  • experience working with patients with Parkinson's disease or other movement disorders.
  • programming skills (preferably in Matlab or Python)

The project will be supervised by Research Fellow David Meder and Prof. Hartwig Siebner.

 

Recent Publications

Beha GH, Stemmerik MG, Boer VO, van der Ploeg AT, van der Beek NAME, Andersen H, Marsman A, Jacobsen LN, Theunissen MTM, Petersen ET, Vissing J. 2025. Quantification of muscle glycogen distribution in Pompe disease using 7 Tesla 13C NMR spectroscopy. JNNP. Accepted.

Güler S, Zivkovic I, Boer VO, Zhurbenko V, Petersen ET. 2025. The mode of operation of high-impedance coils and shielded coaxial cable coils: A comparative study. NMR Biomed. 38(8): e70071. https://doi.org/10.1002/nbm.70071

London A, Schaufuss A, Povazan M, Dichman M-L, Merhout J, Dirksen C, Madsbad S, Siebner HR, Lundsgaard A, Fritzen AM, Kiens B, Bojsen-Møller KN. 2025. Effects of acute iso- and hypocaloric carbohydrate restriction on liver fat and glucose and lipid metabolism. J Clin Endocrinol Metab. dgaf382, https://doi.org/10.1210/clinem/dgaf382

Güler S, Povazan M, Zhurbenko V, Zivkovic I. 2025. An 8Tx/32Rx head-neck coil at 7T by combining 2Tx/32Rx Noval coil with 6TRx shielded coaxial cable elements. Magn Reson Med. 93(2): 864-872. https://doi.org/10.1002/mrm.30297

Madelung CF, Løkkegaard A, Fuglsang SA, Marques MM, Boer VO, Madsen KH, Hejl A-M, Meder D, Siebner HR. 2025. High-resolution mapping of substantia nigra in Parkinson’s disease using 7 tesla magnetic resonance imaging. Npj Parkinsons Dis. 11(113). https://doi.org/10.1038/s41531-025-00972-7

London A, Richter MM, Sjøberg KA, Wewer Albrechtsen NJ, Povazan M, Drici L, Schaufuss A, Madsen L, Øyen J, Madsbad S, Juul Holst J, van Hall G, Siebner HR, Richter EA, Kiens B, Lundsgaard A, Bojsen-Møller KN. 2024. The impact of short-term eucaloric low- and high-carbohydrate diets on liver triacylglycersol content in males with overweight and obesity: a randomized crossover study. Am J Clin Nutrition. 120(2): 283-293. https://doi.org/10.1016/j.ajcnut.2024.06.006

Madsen MAJ, Povazan M, Wiggermann V, Lundell H, Blinkenberg M, Romme Christensen J, Sellebjerg F, Siebner HR. 2024. Association of cortical lesions with regional glutamate, GABA, N-Acetylaspartate, and Myoinositol levels in patients with multiple sclerosis. Neurology. 103(1): e209543. https://doi.org/10.1212/WNL.0000000000209543

Stærkind H, Jensen K, Müller JH, Boer VO, Polzik ES, Petersen ET. 2024. High-field optical cesium magnetometer for magnetic resonance imaging. PRX Quantum. 5(2): 020320. https://doi.org/10.1103/PRXQuantum.5.020320

Stærkind H, Jensen K, Müller JH, Boer VO, Petersen ET, Polzik ES. 2023. Precision measurement of the excited state Landé g-factor and diamagnetic shift of the Cesium D2 line. Phys Rev X. 13(2): 021036. https://doi.org/10.1103/PhysRevX.13.021036

Boer VO, Pedersen JO, Arango N, Kuang I, Stockmann J, Petersen ET. 2022. Improving brain B0 shimming using an easy and accessible multi-coil shim array at ultra-high field. MAGMA. 35(6): 943-951. https://doi.org/10.1007/s10334-022-01014-6

Andersen M, Laustsen M, Boer V. Accuracy investigations for volumetric head-motion navigators with and without EPI at 7 T. 2022. Magn Reson Med. 88(3): 1198-1211. https://doi.org/10.1002/mrm.29296

Madsen MAJ, Wiggermann V, Marques MFM, Lundell H, Cerri S, Puonti O, Blinkenberg M, Romme Christensen J, Sellebjerg F, Siebner HR. 2022. Linking lesions in sensorimotor cortex to contralateral hand function in multiple sclerosis: a 7 T MRI study. Brain. 145(10): 3522-3535. https://doi.org/10.1093/brain/awac203

Sandström KO, Baltzersen OB, Marsman A, Lemvigh CK, Boer VO, Bojesen KB, Nielsen MØ, Lundell H, Sulaiman DK, Sørensen ME, Fagerlund B, Lahti AC, Syeda WT, Pantelis C, Petersen ET, Glenthøj BY, Siebner HR, Ebdrup BH. 2022. Add-on memantine to dopamine antagonism to improve negative symptoms at first psychosis – the AMEND trial protocol. Front Psychiatry. 13: 889572. https://doi.org/10.3389/fpsyt.2022.889572

Madelung CF, Meder D, Fuglsang SA, Marques MM, Boer VO, Madsen KH, Petersen ET, Hejl A-M, Løkkegaard A, Siebner HR. 2022. Locus coeruleus shows a spatial pattern of structural disintegration in Parkinson’s disease. Movement Disord. 37(3): 479-489. https://doi.org/10.1002/mds.28945

 

Selected Recent Conference Abstracts

Engel K, Wiggermann V, Ronen I, Lundell H. Correction of phase fluctuations in diffusion-weighted MRS at high b-values with external phantom reference. ISMRM annual meeting. 05/2025,

Madsen MAJ, Christiansen L, Povazan M, Wiggermann V, Siebner HR. Regional glutamate but not GABA concentration scales with TMS-based measures of cortical excitability – a combined 7T MR spectroscopy and TMS study of the human primary motor hand area. Brain Stimulation, Kyoto, Japan, 02/2025 [Brain Stimulation 18(1) 576, 2025]

Madsen MAJ, Wiggermann V, Lundell H, Christiansen L, Romme Christensen J, Blinkenberg M, Sellebjerg F, Siebner HR. The impact of pathway-specific cortical and white matter pathology on trans-callosal conduction and inhibition in multiple sclerosis, ECTRIMS, Copemhagen, Denmark, 09/2024

Madsen MAJ, Wiggermann V, Christiansen L, Povazan M, Lundell H, Puonti O, Romme Christensen J, Sellebjerg F, Siebner HR. The ipsilateral silent period and its link to cortical lesions in multiple sclerosis, Brain Stimulation, Lisbon, Portugal, 02/2023, [Brain Stimulation 14(6) 1628, 2023]

Stemmerik M, Beha G, Boer V, Marsman A, Jacobsen L, Petersen E, Vissing J. 2022. Using high-field magnetic resonance spectroscopy to measure muscle glycogen in patients with McArdle disease. Neuromuscular Disorders. 32. S73-S74.

Beha G, Stemmerik M, Boer V, Marsman A, Jacobsen L, Petersen E, Vissing J. 2022. Quantification of glycogen distribution in late-onset Pompe patients using 7 Tesla C13 NMR spectroscopy. Neuromuscular Disorders. 32. S73.

Madsen MAJ, Wiggermann V, Povazan M, Lundell H, Boer VO, Marsman A, Blinkenberg MB, Romme Christensen J, Sellebjerg FT, Siebner HR. 2022. Linking cortical demyelination to changes in brain metabolism in multiple sclerosis: a 7T MR spectroscopy study. ECTRIMS annual (virtual) meeting.

Güler S, Costa G, Boer V, Paulides M, Baltus P, Petersen E, Zivkovic I. 2022. Shielded coaxial cable coils: the array configuration for maximized central SNR at 7T MRI. Joint Annual Meeting ISMRM-ESMRMB, 31st annual ISMRM meeting.

Güler S, Zhurbenko V, Zivkovic I, Boer V, Petersen ET. 2022. Second resonance mode ensure intrinsic low coupling between elements on shielded-coaxial-cable coil designs. Joint Annual Meeting ISMRM-ESMRMB, 31st annual ISMRM meeting.

Group Members

Vanessa Wiggermann

Group Leader

Henrik Lundell

Group Leader

Lars G. Hanson

Sebastian Ladegaard Storm

Paul Wessel de Bruin

Ahmed Ibrahim Al-Rahimi

Show all group members (22)

External Collaborators

Jeroen Hendrikse

Department of Radiology, University Medical Center Utrecht, The Netherlands


Dennis Klomp

Department of Radiology, University Medical Center Utrecht, The Netherlands


Andrew Webb

Department of Radiology, Leiden University Medical Center, The Netherlands


Matthias van Osch

Department of Radiology, Leiden University Medical Center, The Netherlands


Itamar Ronen

Department of Radiology, Leiden University Medical Center, The Netherlands


Karin Markenroth Bloch

Swedish National 7T facility, Lund, Sweden


Gunther Helms

Swedish National 7T MRI Facility, Medical Radiation Physics, Lund, Sweden


Kirsten Borup Bojesen

Center for Neuropsychiatric Schizophrenia Research, Mental Health Services, Capital Region of Denmark, Denmark