DRCMR Logo 300px Color
 

[EXPIRED] The Capital Region of Copenhagen is looking for a Research Fellow in Advanced 3T & 7T MRI and MRS for Neuroscience Applications


If you are a team-oriented MR researcher eager to unleash the full potentials of high- and ultra-high field MRI and MRS through novel software and hardware solutions, then you might be the person we are looking for!

A 4-year Research Fellow position in advanced 3T & 7T MRI/MRS applications.

As a researcher at the Danish Research Centre for Magnetic Resonance (DRCMR) you will support new and ongoing studies on a few research scanners and have the freedom to develop novel MRI/MRS sequences, hardware and processing methods primarily targeting neuroscientific applications. We have a Philips 7T research only scanner with 2- and 8-channel transmit, 32 receive and 64 shim channels in addition to the standard 3rd order shim.

You will be working closely with a multidisciplinary team of engineers, physicists, biomedical and clinical experts, who are developing and applying exciting and cutting-edge microstructural, X-nuclei imaging and spectroscopy techniques primarily for 7T, but also 3T studies. You will be part of the Ultra-high field MR group (www.drcmr.dk/7t).

DRCMR is one of the leading research centers for biomedical MRI in Europe (www.drcmr.dk). Our interdisciplinary research is geared to triangulate between MR physics, basic physiology, and clinical research. Approximately 70 researchers from a diverse range of disciplines work together to pursue basic and clinically applied MR research with a focus on structural, functional, and metabolic MRI of the human brain and its disorders. Collaboration is key at DRCMR – we do not expect any researcher to be able to do everything alone, but we expect everyone to be interested in sharing knowledge with colleagues.

The DRCMR is embedded in the Department of Radiology and Nuclear Medicine, a large diagnostic imaging department including all biomedical imaging modalities at Copenhagen University Hospital Hvidovre. DRCMR has close interaction with clinicians and radiologists and a state-of-the-art MR-research infrastructure, which includes a pre-clinical 7T MR scanner, six whole-body MR scanners (one 7T, four 3T and one 1.5T scanners), a hardware workshop and laboratory, a neuropsychology laboratory, an EEG laboratory, and two laboratories for non-invasive brain stimulation.  The 7T is a national research infrastructure, serving internal and external users across Denmark.

Your profile:

You are a team-oriented, creative and enthusiastic researcher with:

  • A PhD degree in engineering, physics, biomedical sciences or a related field.
  • At least 2-3 years of doctoral and/or postdoctoral experience within advanced high or ultra-high field MRI (preferably on Philips systems).
  • A clear interest in MRI/MRS acquisition, reconstruction, and image analysis.
  • Excellent knowledge of MR physics and programming skills in C/C++, MATLAB or Python.
  • Ideally experience in MR sequence programming (preferably on Philips MR systems).
  • Affinity with medical applications.
  • Strong communication and collaborative skills.

Your tasks:

  • To work directly with other scientists to ensure that our research studies take full advantage of the 3T & 7T MR scanners by maximizing the clinical information available in the multi-parametric MRI images (structural, functional and other quantitative read-outs) and MRS including deuterium spectroscopy.
  • To support the 7T scanners daily operation, including MRI safety trainings.
  • To develop novel sequences and data analysis methods and bring these to applications in new projects.
  • To advance the field through your own research.
  • To engage in internal education, grant writing, knowledge dissemination, and publication of results in international, recognized scientific journals.

Your position:

You will be employed for a four-year period at the DRCMR and join the ultra-high field MR group.

Salary and Terms of Employment:

Salary, pension and terms of employment are in accordance with the agreement between the Danish Regions (Danske Regioner) and the relevant professional organization. The salary depends on background education and seniority. Further supplements can be negotiated. Note that candidates coming from abroad may be eligible for tax reductions. The position is open for candidates of all nationalities. We see diversity as strength and encourage everyone regardless of gender, age, ethnicity, disabilities or religion to apply.

 

Selected Publications

Siebner, Thomas Hartwig, Stefan Fuglsang, Christopher Fugl Madelung, Annemette Løkkegaard, Flemming Bendtsen, Jens Dahlgaard Hove, Morten Damgaard, Jan Lysgård Madsen, and Hartwig Roman Siebner. “Gastric Emptying Is Not Delayed and Does Not Correlate With Attenuated Postprandial Blood Flow Increase in Medicated Patients With Early Parkinson’s Disease.” Frontiers in Neurology 13 (2022). https://www.frontiersin.org/article/10.3389/fneur.2022.828069.

Madelung, Christopher F., David Meder, Søren A. Fuglsang, Marta M. Marques, Vincent O. Boer, Kristoffer H. Madsen, Esben T. Petersen, Anne-Mette Hejl, Annemette Løkkegaard, and Hartwig R. Siebner. “Locus Coeruleus Shows a Spatial Pattern of Structural Disintegration in Parkinson’s Disease.” Movement Disorders 37, no. 3 (2022): 479–89. https://doi.org/10.1002/mds.28945.

Siebner, Thomas Hartwig, Christopher Fugl Madelung, Flemming Bendtsen, Annemette Løkkegaard, Jens Dahlgaard Hove, and Hartwig Roman Siebner. “Postprandial Increase in Mesenteric Blood Flow Is Attenuated in Parkinson’s Disease: A Dynamic PC-MRI Study.” Journal of Parkinson’s Disease 11, no. 2 (January 1, 2021): 545–57. https://doi.org/10.3233/JPD-202341.

Herz, Damian M., David Meder, Julia A. Camilleri, Simon B. Eickhoff, and Hartwig R. Siebner. “Brain Motor Network Changes in Parkinson’s Disease: Evidence from Meta-Analytic Modeling.” Movement Disorders 36, no. 5 (2021): 1180–90. https://doi.org/10.1002/mds.28468.

Lohse, Allan, David Meder, Silas Nielsen, Anders Elkjær Lund, Damian M Herz, Annemette Løkkegaard, and Hartwig R Siebner. “Low-Frequency Transcranial Stimulation of Pre-Supplementary Motor Area Alleviates Levodopa-Induced Dyskinesia in Parkinson’s Disease: A Randomized Cross-over Trial.” Brain Communications 2, no. 2 (July 1, 2020): fcaa147. https://doi.org/10.1093/braincomms/fcaa147.

Haagensen, Brian N., Damian M. Herz, David Meder, Kristoffer H. Madsen, Annemette Løkkegaard, and Hartwig R. Siebner. “Linking Brain Activity during Sequential Gambling to Impulse Control in Parkinson’s Disease.” NeuroImage: Clinical 27 (January 1, 2020): 102330. https://doi.org/10.1016/j.nicl.2020.102330.

Betts, Matthew J., Evgeniya Kirilina, Maria C. G. Otaduy, Dimo Ivanov, Julio Acosta-Cabronero, Martina F. Callaghan, Christian Lambert, et al. “Locus Coeruleus Imaging as a Biomarker for Noradrenergic Dysfunction in Neurodegenerative Diseases.” Brain 142, no. 9 (September 1, 2019): 2558–71. https://doi.org/10.1093/brain/awz193.

Meder, David, Damian Marc Herz, James Benedict Rowe, Stéphane Lehéricy, and Hartwig Roman Siebner. “The Role of Dopamine in the Brain - Lessons Learned from Parkinson’s Disease.” NeuroImage, Mapping diseased brains, 190 (April 15, 2019): 79–93. https://doi.org/10.1016/j.neuroimage.2018.11.021.

Irmen, Friederike, Andreas Horn, David Meder, Wolf-Julian Neumann, Philip Plettig, Gerd-Helge Schneider, Hartwig Roman Siebner, and Andrea A. Kühn. “Sensorimotor Subthalamic Stimulation Restores Risk-Reward Trade-off in Parkinson’s Disease.” Movement Disorders 34, no. 3 (2019): 366–76. https://doi.org/10.1002/mds.27576.

Meder, David, and Hartwig Roman Siebner. “Spectral Signatures of Neurodegenerative Diseases: How to Decipher Them?” Brain 141, no. 8 (August 1, 2018): 2241–44. https://doi.org/10.1093/brain/awy195.

Lehericy, Stéphane, David E. Vaillancourt, Klaus Seppi, Oury Monchi, Irena Rektorova, Angelo Antonini, Martin J. McKeown, et al. “The Role of High-Field Magnetic Resonance Imaging in Parkinsonian Disorders: Pushing the Boundaries Forward.” Movement Disorders 32, no. 4 (April 1, 2017): 510–25. https://doi.org/10.1002/mds.26968.

Correia, M. M., Rittman, T., Barnes, C. L., Coyle-Gilchrist, I. T., Ghosh, B., Hughes, L. E. & Rowe, J. B.
Towards accurate and unbiased imaging-based differentiation of Parkinson's disease, progressive supranuclear palsy and corticobasal syndrome.
Brain communications. 2, 1, p. 1-18, fcaa051. 2020.

Kaalund, S. S., Passamonti, L., Allinson, K. S. J., Murley, A. G., Robbins, T. W., Spillantini, M. G. & Rowe, J. B.
Locus coeruleus pathology in progressive supranuclear palsy, and its relation to disease severity.
Acta neuropathologica communications. 8, 1, p. 1-11, 11. 2020.

van der Vegt, J. P. M., Hulme, O. J., Madsen, K. H., Buhmann, C., Bloem, B. R., Münchau, A., Helmich, R. C. & Siebner, H. R.
Dopamine agonist treatment increases sensitivity to gamble outcomes in the hippocampus in de novo Parkinson's disease.
NeuroImage. Clinical. 28, p. 1-8, 102362. 2020.

Dogonowski, A. M., Andersen, K. W., Sellebjerg, F., Schreiber, K., Madsen, K. H. & Siebner, H. R.
Functional neuroimaging of recovery from motor conversion disorder: A case report.
NeuroImage. 190, p. 269-274, 2019.

Dubbioso, R., Manganelli, F., Siebner, H. R. & Di Lazzaro, V.
Fast Intracortical Sensory-Motor Integration: A Window Into the Pathophysiology of Parkinson's Disease.
Frontiers in Human Neuroscience. 13, p. 1-14, 111. 2019.

van Eimeren, T., Antonini, A., Berg, D., Bohnen, N., Ceravolo, R., Drzezga, A., Höglinger, G. U., Higuchi, M., Lehericy, S., Lewis, S., Monchi, O., Nestor, P., Ondrus, M., Pavese, N., Peralta, M. C., Piccini, P., Pineda-Pardo, J. Á., Rektorová, I., Rodríguez-Oroz, M., Rominger, A., Seppi, K., Stoessl, A. J., Tessitore, A., Thobois, S., Kaasinen, V., Wenning, G., Siebner, H. R., Strafella, A. P. & Rowe, J. B.
Neuroimaging biomarkers for clinical trials in atypical parkinsonian disorders: Proposal for a Neuroimaging Biomarker Utility System.
Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 11, p. 301-309, 2019.

Siebner, Hartwig R., David Meder, and Damian M. Herz. “FMRI in Parkinson’s Disease.” In FMRI: Basics and Clinical Applications, edited by Stephan Ulmer and Olav Jansen, 417–31. Cham: Springer International Publishing, 2020. https://doi.org/10.1007/978-3-030-41874-8_26

Thomsen, B. L. C., Herz, D. M., Siebner, H. R. & Løkkegaard, A.
Dyskinesier ved Parkinsons sygdom: opdatering om nye billeddannende metoder og behandlingsmuligheder.
Ugeskrift for Laeger. 12, 2017, p. 2-6, 2017.

Lehéricy, S., Vaillancourt, D. E., Seppi, K., Monchi, O., Rektorova, I., Antonini, A., McKeown, M. J., Masellis, M., Berg, D., Rowe, J. B., Lewis, S. J. G., Williams-Gray, C. H., Tessitore, A., Siebner, H. R. & International Parkinson and Movement Disorder Society -Neuroimaging Study Group.
The role of high-field magnetic resonance imaging in parkinsonian disorders: Pushing the boundaries forward.
Movement disorders. 32, 4, p. 510-525, 2017.

Løkkegaard A, Herz DM, Haagensen BN, Lorentzen AK, Eickhoff SB, Siebner HR (2016) Altered sensorimotor activation patterns in idiopathic dystonia - an activation likelihood estimation meta-analysis of functional brain imaging studies. Hum Brain Mapp 37:547-557.

Herz DM,  Haagensen BN, Nielsen SH, Madsen KH, Løkkegaard A, Siebner HR (2016) Resting-state connectivity predicts levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord 31:521-529.

Herz DM, Haagensen BN, Christensen MS, Madsen KH, Rowe JB, Løkkegaard A, Siebner HR (2015) Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans. Brain 138:1658-1666.

Herz DM, Haagensen BN,Christensen MS, Madsen KH, Rowe J, Løkkegaard A, Siebner HR (2014) The acute brain response to levodopa heralds dyskinesias in Parkinson’s disease. Ann Neurol 75:829-836.

Herz DM, Eickhoff SB, Løkkegaard A, Siebner HR (2014) Functional neuroimaging of motor control in Parkinson’s disease: A meta-analysis. Hum Brain Mapp 35:3227-3237. 

van der Vegt JPM, Hulme OJ, Zittel S, Madsen KH, Weiss MM, Buhmann C, Bloem BR, Münchau A, Siebner HR (2013) Attenuated neural response to gamble outcomes in drug-naive patients with Parkinson’s disease. Brain 136:1192-1203.

 

 

Group Members

David Meder

Group Leader

Hartwig R. Siebner

Yufei Song

Jiahua Xu

Show all group members (21)

External Collaborators

Assoc. Prof. Annemette Løkkegaard

Copenhagen University Hospital Bispebjerg


Damian M. Herz, MD, PhD

Nuffield Department of Clinical Neurosciences
University of Oxford


Prof. Stéphane Lehericy, MD, PhD

Institut du Cerveau et de la Moelle épinière – ICM, 
Centre de NeuroImagerie de Recherche – CENIR, Sorbonne Universités, Paris


Prof. James Rowe

Behavioural and Clinical Neuroscience Institute
Dept. of Clinical Neurosciences, University of Cambridge


Prof. Angela Cenci Nilsson

Lund University


Prof. Andrea Kühn,

Charité - Universitätsmedizin Berlin
Movement Disorders and Neuromodulation Section


Mads Barløse,

Copenhagen University Hospital Hvidovre


Prof. Poul Jennum

Rigshospitalet, Neurocentre
Department of Clinical Medicine


Prof. Ray Dolan

University College London - Imaging Neuroscience
UCL-Max Planck Centre for Computational Psychiatry and Ageing


Rune Asger Vestergaard Frandsen, MD, PhD

Rigshospitalet, Neurocentre
Department of Clinical Medicine


Salvatore Bertino, MD

University of Messina, Italy