DRCMR Logo 300px Color
Mattias Rickhag




Associate Professor


Molecular Neuropharmacology Laboratory, Department of Neuroscience, University of Copenhagen

Research Interests

I have a research background in experimental animal models of neurodegenerative diseases. Here, I wish to bridge molecular and system neuroscience and investigate aberrant cortico-basal ganglia (BG) circuit adaptations in models of Parkinson’s disease (PD). I will implement viral platforms and genetically-encoded biosensors in combination with lesion models and neuroimaging to capture network/neurotransmitter changes in the BG circuit. Pathway-selective manipulations of BG cell populations will be performed to assess motor restoration in rodent models of PD. In parallel, a G-protein coupled receptor (GPCR) expression atlas derived from BG cell populations is explored in order to identify putative novel non-dopaminergic targets for PD pharmacotherapy

Research Groups

Preclinical Research group (Group Leader)
Control of Movement group
Movement Disorders grou

Curriculum Vitae



PhD in Experimental Brain Research, Medical Faculty, Lund University


MSc in Biomedicine, Lund University


2021 - Present

Senior Researcher, DRCMR

2015 - Present

Assistant Professor, Department of Neuroscience, University of Copenhagen

2011 - 2015

Post-doctoral fellow (grant from the Lundbeck Foundation), Department fo Neuroscience, University of Copenhagen

2008 - 2010

Post-doctoral fellow (grant from the Danish Research Council), Department of Neuroscience, University of Copenhagen

2003 - 2007

PhD Student, Medical Faculty, Lund University, Sweden

Full CV


Christensen M, Nørr SE, Gether U and Rickhag M (2021). Direct-Pathway Spiny Projection Neuron Inhibition Evokes Transient Circuit Imbalance Manifested as Rotational Behavior.  Neuroscience. 2021 Jan 15;453:32-42

Ciriachi C, Svane-Petersen D and Rickhag M (2019). Genetic Tools to Study Complexity of Striatal Function. Journal of Neuroscience Research. 2019 Oct;97(10):1181-1193

DiCarlo GE, Aguilar JI, Matthies HJ, Harrison FE, Bundschuh KE, West A, Hashemi P, Herborg F, Rickhag M, Chen H, Gether U, Wallace MT, Galli A (2019). Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. Journal of Clinical Investigation. 2019 May 16;129(8):3407-3419.

Bay Kønig A, Ciriachi C, Gether U and Rickhag M (2019). Chemogenetic Targeting of Dorsomedial Direct-Pathway Striatal Projection Neurons Selectively Elicits Rotational Behavior in Mice. Neuroscience. 2019 Jan 19. pii: S0306-4522(19)30033-8

Runegaard A, Sørensen AT, Fitzpatrick C, Jørgensen S, Petersen A, Hansen N, Weikop P, Andreasen J, Mikkelsen J, Perrier JF, Woldbye D, Rickhag M, Wörtwein G and Gether U (2018). Locomotor- and reward-enhancing effects of cocaine are differentially regulated by chemogenetic stimulation of Gi-signaling in dopaminergic neurons. eNeuro: 0345-17.2018 

Jensen K, Sørensen G, Dencker D, Owens W, Rahbek-Clemmensen T, Brett Lever M, Runegaard A, Riis Christensen N, Weikop P, Wörtwein G, Fink-Jensen A, Madsen K, Daws L, Gether U and Rickhag M (2018). PICK1-deficient mice exhibit impaired response to cocaine and dysregulated dopamine homeostasis. eNeuro:0422-17.2018

Jensen KL, Runegaard AH, Weikop P, Gether U and Rickhag M (2017). Assessment of Dopaminergic Homeostasis in Mice by Use of High-Performance Liquid Chromatography Analysis and Synaptosomal Dopamine Uptake. Journal of Visualized Experiments, 127, e56093, doi:10.3791/56093

Runegaard AH, Jensen KL, Fitzpatrick CM, Dencker D, Weikop P, Gether U and Rickhag M (2017). Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice. European Journal of Neuroscience, 45(1):121-128

Apuschkin M, Stilling S, Rahbek-Clemmensen T, Sørensen G, Fortin G, Herborg Hansen F, Eriksen J, Trudeau LE, Egerod K, Gether U and Rickhag M (2015). A novel dopamine transporter transgenic mouse line for identification and purification of midbrain dopaminergic neurons reveals midbrain heterogeneity. European Journal of Neuroscience 42: 2438-2454

Steinkellner T, Montgomery TR, Hofmaier T, Kudlacek O, Yang JW, Rickhag M, Jung G, Lubec G, Gether U, Freissmuth M, Sitte HH (2015). Amphetamine action at the cocaine- and antidepressant sensitive serotonin transporter is modulated by αCaMKII. Journal of Neuroscience 27;35(21):8258-71

Steinkellner T, Mus L, Eisenrauch B, Constantinescu A, Leo D, Konrad L, Rickhag M, Sørensen G, Efimova EV, Kong E, Willeit M, Sotnikova TD, Kudlacek O, Gether U, Freissmuth M, Pollak DD, Gainetdinov RR, Sitte HH (2014). In vivo amphetamine action is contingent on alpha-CaMKII. Neuropsychopharmacology 39(11): 2681-93

Rickhag M, Owens WA, Winkler MT, Strandfelt KN, Rathje M, Andresen B, Sørensen G, Madsen KL, Jørgensen TN, Wörtwein G, Woldbye DP, Sitte H, Daws LC and Gether U (2013).  Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release. Journal of Biological Chemistry 20;288(38): 27534-44

Rickhag M, Hansen FH, Sørensen G, Strandfelt KN, Andresen B, Gotfryd K, Madsen KL, Vestergaard-Klewe I, Ammendrup-Johnsen I, Eriksen J, Newman AH, Füchtbauer EM, Gomeza J, Woldbye DP, Wörtwein G and Gether U. (2013). A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter. Nature Communications 4:1580

Holst B, Madsen KL, Jansen AM, Jin C, Rickhag M, Lund VK, Jensen M, Bhatia V, Sørensen G, Madsen AN, Xue Z, Møller SK, Woldbye DP, Qvortrup K, Huganir R, Stamou D, Kjærulff O and Gether U. (2013). PICK1 Deficiency Impairs Secretory Vesicle Biogenesis and Leads to Growth Retardation and Decreased Glucose Tolerance. PLoS Biology 11(4):e1001542

Ruscher K, Shamloo M, Rickhag M, Ladunga I, Soriano L, Gisselsson L, Toresson H, Ruslim-Litrus L, Oksenberg D, Urfer R, Johansson BB, Nikolich K and Wieloch T.  (2011). The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain 134(3): 732-46

Ruscher K, Johannesson E, Brugiere E, Erickson A, Rickhag M and Wieloch T.  (2009). Enriched enviroment reduces apolipoprotein E (ApoE) in reactive astrocytes and attenuates inflammation of the peri-infarct tissue after experimental stroke. Journal of Cerebral Blood Flow and Metabolism 29(11): 1796-805

Rickhag M, Deierborg T, Patel S, Ruscher K and Wieloch T (2008). Apolipoprotein D is elevated in oligodendrocytes in the peri-infarct region after experimental stroke – Influence of enriched environment. Journal of Cerebral Blood Flow and Metabolism 28(3): 551-62

Rickhag M, Teilum M and Wieloch T (2007). Rapid and long-term induction of effector immediate-early genes (BDNF, Neuritin and Arc) in peri-infarct cortex and dentate gyrus after ischemic injury in rat brain. Brain Research. 1151: 203-210

Shamloo M, Soriano L, von Schack D, Rickhag M, Chin DJ, Gonzalez-Zulueta M, Gido G, Urfer R, Wieloch T and Nikolich K (2006). Npas4, a novel helix-loop-helix PAS domain protein, is regulated in response to cerebral ischemia. European Journal of Neuroscience. 24(10): 2705-2720

Takao K, Rickhag M, Hegardt C, Oredsson S and Persson L (2006). Induction of apoptotic cell death by putrescine. Int J Biochem Cell Biol. 38(4): 621-8

Rickhag M, Wieloch T, Gidö G, Elmer E, Krogh M, Murray J, Lohr S, Bitter H, Chin DJ, von Schack D, Shamloo M and Nikolich K (2006). Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue. Journal of Neurochemistry. 96(1): 14-29

Urfer R, Rickhag M, Oksenberg D, Shamloo M, Lohr S, Murray J, Krogh M, Johansson B, Nikolich K, Wieloch T (2005). A new approach to enhancement of functional recovery after stroke by genomics analysis of the enriched environment model. Stroke. 36(2): 427-428