Damsted SK;Born AP;Paulson OB;Uldall P
Exogenous glucocorticoids and adverse cerebral effects in children
Eur J Paediatr Neurol 2011, 15(6), , 465-477

Glucocorticoids are commonly used in treatment of paediatric diseases, but evidence of associated adverse cerebral effects is accumulating. The various pharmacokinetic profiles of the exogenous glucocorticoids and the changes in pharmacodynamics during childhood, result in different exposure of nervous tissue to exogenous glucocorticoids. Glucocorticoids activate two types of intracellular receptors, the mineralocorticoid receptor and the glucocorticoid receptor. The two receptors differ in cerebral distribution, affinity and effects. Exogenous glucocorticoids favor activation of the glucocorticoid receptor, which is associated with unfavorable cellular outcomes. Prenatal treatment with glucocorticoids can compromise brain growth and is associated with periventricular leukomalacia, attentions deficits and poorer cognitive performance. In the neonatal period exposure to glucocorticoids reduces neurogenesis and cerebral volume, impairs memory and increases the incidence of cerebral palsy. Cerebral effects of glucocorticoids in later childhood have been less thoroughly studied, but apparent brain atrophy, reduced size of limbic structures and neuropsychiatric symptoms have been reported. Glucocortioids affect several cellular structures and functions, which may explain the observed adverse effects. Glucocorticoids can impair neuronal glucose uptake, decrease excitability, cause atrophy of dendrites, compromise development of myelin-producing oligodendrocytes and disturb important cellular structures involved in axonal transport, long-term potentiation and neuronal plasticity. Significant maturation of the brain continues throughout childhood and we hypothesize that exposure to exogenous glucocorticoids during preschool and school age causes adverse cerebral effects. It is our opinion that studies of associations between exposure to glucocorticoids during childhood and impaired neurodevelopment are highly relevant