
Math supplement: Magnetic resonance basics

Lars G. Hanson, February 2021

This mathematical appendix supplements the MRI introduction available in English
and Danish via https://drcmr.dk/Education#MRI_educational_material.1 Slides,
software and YouTube videos are also provided there to improve the understanding.

1 The equation of motion for the nuclear magnetic moment

The hydrogen nuclei have a property called spin which make them behave like they are
rotating, i.e. they have angular momentum (Danish: “bevægelsesmængdemoment” or
“impulsmoment”). The fact that all nuclei appear to be spinning at exactly the same
rate hints that there is more to it. Nuclear spin is a consequence of relativistic quantum
mechanics, and is not quite rotation. For our purposes it is sufficient to note, however,
that spin makes nuclei behave as particles rotating at the same rate.

Each hydrogen nucleus consists of a single positively charged proton. The current loop
associated with a rotating charge distribution is expected to cause magnetism, and that
is indeed what happens for the hydrogen nuclei. They each have a magnetic moment µ,
which is proportional to their angular momentum J that is along the spin axis.

µ = γJ (1)

The constant of proportionality is the “gyromagnetic ratio” which differs between nuclear
species and is γ = 42 MHz/T for hydrogen nuclei. We will immediately convert Hz to
an angular frequency by multiplying γ with 2π: γ = 263 · 106 s−1/T. Depending on
context, γ may be defined to include the factor of 2π in which case the unit is s−1/T.
Similarly, the Larmor frequency may be given in Hz or in radians per second (s−1 since
radians are implicit). This may be confusing at first, but it is typically not too difficult
to resolve. You just need to make sure that γ and the Larmor frequency appear with
the appropriate units whenever they matter.

We will now consider how the magnetic dipole moves in a magnetic field. From classical
mechanics it is known that a change of the angular momentum is generally related to

1For DTU courses 22481 and 22485, the mathematical description of magnetic resonance (section 4) is
not essential, whereas the math in the first sections are (relaxation in 22481, precession and relaxation
in 22485). The understanding of magnetic resonance is essential in both courses. Section 5 concerning
spectroscopy and imaging is a topic of course 22506. See https://www.cmr.healthtech.dtu.dk/

education/mr-courses-and-their-connection
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the torque τ (“kraftmoment” in Danish): dJ/dt = τ . In this case, the torque is the
”twist” caused by the magnetic field B on the magnetic dipole:

dJ

dt
= µ×B (2)

When merging the equations above, we get a general formula describing how the mag-
netic moment of a rotating particle will change when subject to a magnetic field:

dµ

dt
= γµ×B (3)

Since the change of µ is orthogonal to itself and to B, this equation describes rotation
of µ around B. This is true for the nuclei individually (or strictly speaking for their
µ expectation values, if you are into quantum mechanics). Provided the nuclei feel the
same field, the equation also applies to the total magnetization of all nuclei, M =

∑
i µi

(also called the net magnetization or “nettomagnetiseringen” in Danish). Check that
this latter claim is true!

2 Precession

Before exploring the magnetic resonance phenomenon, we consider how the magnetiza-
tion of a nucleus will behave in a static magnetic field B0 = (0, 0, B0), where the z-axis
has been defined to be along the static field B0. Using the equation above for this special
case, we have

dµx
dt

= γµyB0,
dµy
dt

= −γµxB0,
dµz
dt

= 0 (4)

These coupled differential equations, can be solved in several ways, and we choose a par-
ticularly elegant one: Looking at equation (3), we may realize that the magnetization
will rotate around the magnetic field. Since rotation can be described by complex ex-
ponentials, we choose to represent the transversal magnetization as a complex number,
even though it actually is a 2D vector. It will turn out to be convenient to combine
the x and y components of µ into a complex transversal magnetization µxy ≡ µx + iµy.
Using equation (4) and this definition, we do a bit of rewriting (verify it!):

dµxy
dt

= −iγB0µxy,
dµz
dt

= 0 (5)

The shift to a complex notation reduced the three coupled equations to two uncoupled
first-order differential equations. We recognize the Larmor frequency ω0 = γB0 in these
equations which are easily solved:

µxy(t) = µt=0
xy exp(−iω0t), µz(t) = µt=0

z (6)

We are free to choose time zero and the initial conditions as we wish.
Since multiplication by a factor exp(iφ) rotates a complex number by an angle φ in the

complex plane, we see that this solution to the equations of motion (5) indeed describes
clockwise rotation of the transversal magnetization with a frequency ω0.
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3 Relaxation

We have found the time evolution of the nuclear magnetization in a constant magnetic
field, but we still need to include relaxation in the description. This comes about since
the individual nuclei interact magnetically so that they feel field fluctuations around the
mean. This makes the total transversal magnetization Mxy decay exponentially towards
zero with a time constant T2. Similarly, the total longitudinal magnetization Mz is
known to relax exponentially back towards equilibrium M0 = (0, 0,M0) on a time scale
T1. We may describe the evolution as follows:

Mxy(t) = M t=0
xy exp(−iω0t) exp(−t/T2) (7)

Mz(t) = M t=0
z exp(−t/T1) +M0(1− exp(−t/T1))

The first equation describes how the precessing transversal magnetization decays away.
For the intensity of an image acquired at time TE after excitation (the “echo time”), the
phase factor is insignificant, I(TE) ∝ |Mxy(TE)| = |M t=0

xy | exp(−TE/T2). The first term
of the second equation describes how the “memory” of the initial longitudinal magneti-
zation M t=0

z decays away on a timescale T1 while the second term describes how “fresh”
longitudinal magnetization is created on the same time scale so that the magnetization
approaches equilibrium after excitation. Please prove that this formulation is equiva-
lent to the following: The deviation of the longitudinal magnetization from equilibrium,
decays away exponentially with a time constant T1.

The evolution of the magnetization could alternatively be found by directly solving
modified differential equations similar to equation (5) with added relaxation terms:

dMxy

dt
= −iω0Mxy −Mxy/T2,

dMz

dt
= −(Mz −M0)/T1 (Check!) (8)

4 Magnetic resonance

We now explore the magnetic resonance phenomenon which provides a way to rotate the
magnetization away from equilibrium using weak oscillating magnetic fields. We ignore
relaxation since the involved bursts of radio waves are so short that relaxation during
excitation is insignificant. Hence the description below is equally valid for the magnetic
moment µ of a single nucleus, and for the total magnetization M of nuclei that all feel
the same external magnetic fields (such a group of nuclei is called “an isochromate”).

MR experiments involve a strong polarizing field, B0, and a much weaker orthogonal
near-resonant RF field, B1(t), oscillating in the xy-plane (we can ignore the electric
contribution to the RF field in this connection). Again, we combine the x and y com-
ponents and define a complex magnetization µxy = µx + iµy and a similar complex field
Bxy = Bx + iBy. Rewriting equation (3), we get

dµxy
dt

= −iγ(µxyBz − µzBxy),
dµz
dt

= γ Im(µ∗xyBxy) =
−iγ

2
(µ∗xyBxy − µxyB∗

xy) (9)

The asterisk (*) denotes complex conjugation. The motion of µ is dominated by a rapid
clockwise precession around ẑ for positive γ since |Bz| = B0 � |Bxy|. The case of a
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constant amplitude RF field is of special interest and is discussed in detail. We define
the x-axis to be along the oscillating field generated by a loop coil: B1 ≡ 2B1 cos(ωt)x̂.
Using the definition of Bxy and Euler’s formula, this is equivalent to a complex field

Bxy = Bx + iBy = B1(exp(iωt) + exp(−iωt)) (10)

The component B1 exp(−iωt) rotating the same way as the precessing magnetization
will influence it significantly, while the counter-rotating field B1 exp(iωt) can safely be
ignored since it is roughly 2ω0 away from resonance (it causes a slight wiggling only).
This approximation is valid for fields oscillating near the Larmor frequency, and we only
care about such. Hence, half of the field generated by a loop coil is wasted (the counter-
rotating component), and we generally prefer circularly polarized coils generating and
receiving fields that rotate together with the magnetization.

The equations of motion are expressed in the rotating frame of reference following
the Bxy-field rotation by defining the slowly varying quantities µ̃xy = µxy exp(iωt) and
B̃xy = Bxy exp(iωt) ' B1. The approximation in the last equation was justified above.
Expressed in terms of those quantities, equation (9) becomes

dµ̃xy
dt

= i(ω − ω0)µ̃xy + iγB1µz (11)

dµz
dt

= γIm(µ̃∗xyB̃xy) = −γµ̃yB1 (12)

The y-component of the transversal magnetization in the rotating frame of reference µ̃xy
is here denoted µ̃y ≡ Im(µ̃xy). For the special case of a resonant field, ω = ω0, the
equations reduce to

dµ̃xy
dt

= iγB1µz (13)

dµz
dt

= −γµ̃yB1 (14)

If the first equation is split in real and imaginary parts, we see that we are back to a
set of equations very similar to (4). The solution is therefore also similar, now being
precession of µ̃ around B̃1 (rather than of µ around B0). Consequently, when a constant
RF field is present, the dynamics in the rotating frame is found to resemble those in the
stationary frame in the absence of RF field. The only difference is that the precession is
now around an axis in the transversal plane.

To summarize: In absence of radio waves, the magnetization precesses around the
static magnetic field B0 at the frequency γB0. Changing to the rotating frame of ref-
erence, this precession “disappears”, and the magnetization becomes stationary. The
dynamics become complex in the stationary frame, when a resonant rotating radio wave
field B1 is added. But in the rotating frame, this field is stationary, and the magnetiza-
tion will simply precess around it at a low frequency γB1. This is nuclear MR, which
differs from compass MR only since the nuclei precess rather than vibrate. The difference
is due to the nuclei not only being magnetic, but also having spin (angular momentum).
The shift to a complex notation, and to the rotating frame of reference, is so convenient
that even the sampled raw signal is saved by the scanner in a corresponding format.

Exercise: Rewrite equations (8) in a frame of reference rotating at frequency ω0. Solve!
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5 From Spectroscopy to Imaging to Spectroscopic Imaging:
Phase rolls and the Fourier transform

It is tempting (and often useful) to explain imaging in terms of frequency encoding,
which is easy to understand, but has limited scope, since it only explains sequences
with constant readout-gradients sufficiently, i.e., 1D or radial sequences. The k-space
approach is much more general, and will be introduced here, and even extented to (k, t)-
space which is central for spectroscopic imaging. Math and explanations are mixed,
so keep reading, even if parts are challenging. The reader is assumed to have a basic
understanding of MR spectroscopy and classical MR concepts2, e.g. as described in
introductory sections of notes at http://eprints.drcmr.dk/37/.

There are many ways of introducing imaging and slightly different approaches are
chosen here and in the mentioned MR introduction, which may cause slight confusion
(or clarity). The mentioned notes only describe gradients as creating phase rolls during
imaging, whereas gradients are here also described as refocusing pre-existing conceptual
phase rolls (details below). The latter description is more accurate and general, but
also more challenging to understand. To keep the explanation simple, the course notes
therefore implicitly assume k-space symmetry, which is not always valid. This text is a
supplement.

The starting point for the coming discussion is basic MR and spectroscopy, which is
assumed familiar (see course notes). The first parts explain how the Fourier transform
works, and is general for any kind of spectroscopy and imaging. The word “scanner” will
in this context be used indiscriminately for NMR spectrometers and imaging systems.
Only proton MR is considered for convenience, but the principles are general.

1. Consider excitation by a 90◦ pulse converting longitudinal magnetization into
transversal magnetization at time t = 0. We can now record an oscillating signal
curve (FID) reflecting precession. It is first discussed how the Fourier transform
converts the FID into a spectrum, and this insight is used to understand imaging.

We define the vector M = (Mx,My,Mz) to be the magnetization of the sample.
As always, the z-axis is chosen along the B0-field. The transversal magnetization
(Mx,My) is a 2D vector, and such vectors can alternatively be represented as
complex numbers. We prefer to use the latter for MR to simplify math, since
rotation is compactly described using complex numbers. We define the complex
transversal magnetization Mxy = Mx + iMy. Clockwise rotation of a complex
number by an angle φ around origo is simply described by multiplication with a
factor exp(−iφ) (never mind why – you may choose to think of it simply as a
notation for rotation). Clockwise precession at some frequency ωm can therefore
be conveniently expressed as a complex phase factor exp(−iωmt) that is multiplied
onto the initial transversal magnetization Mxy(t = 0) created by excitation. ωm is

2Classical MR descriptions are consistent with correct QM descriptions, as described in Is Quan-
tum Mechanics necessary for understanding Magnetic Resonance? Concepts in Magnetic Reso-
nance Part A, 32A(5), 2008. There is additional detail in a new book chapter partially available
at http://drcmr.dk/MR
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here the metabolite precession frequency. The figure below shows the transversal
magnetization at different points in time following excitation. The rotation that
is seen in the transveral (or complex) plane reflects precession. The observation
period is here chosen so short that relaxation plays no role, but on a longer time
scale, the arrow length will decrease on a time scale T2

∗.

t

“Phase” in the context of MR typically refers to the direction of the transversal
magnetization, i.e. the angle that changes due to precession in the figure above.
Precession causes a linear phase variation φ = ωmt along the time axis, i.e., a
regular rotation called a phase roll as illustrated above.

2. The signal recorded after excitation is proportional to the transversal magnetiza-
tion and will reflect precession and signal decay.3 It is frequency-shifted in the
scanner’s receiver by the demodulation frequency that is typically set to the Lar-
mor frequency of water. The demodulation simply slows all recorded precession
down by the Larmor frequency of water. This results in the transversal magne-
tization appearing to be recorded in a frame of reference rotating at the water
frequency (see mentioned course notes). The metabolite signals will each oscil-
late as illustrated above, but at different frequencies determined by the molecular
structure (the chemical shift). This rotation is reflected in the recorded samples
that are stored as complex numbers changing as shown above (the FID). Due to
demodulation at the water frequency, only the water signal will not oscillate:

t

Consider the integral
∫
S(t) dt of the signal over time, i.e. the sum of all the com-

plex numbers (representing magnetization vectors) illustrated above. It will be
proportional to the non-oscillating water content, since the other metabolite sig-
nals oscillate and therefore contribute insignificantly to the integral (all phases are
almost equally present for those). The total signal is a sum of metabolite contri-
butions, S(t) =

∑
m Sm(t = 0) exp(−iωmt), where the term contributed by water

has ωm = 0 due to demodulation. To separate out another signal component than
water, we need to compensate its precession before integrating. Back-rotation to
detect a frequency ω is done by multiplication of the signal S(t) by exp(iωt) before
integration, i.e.

∫
S(t) exp(iωt) dt. Remember that the signal from a particular

metabolite, Sm(t), is itself proportional to exp(−iωmt) where ωm is the metabolite
frequency. When ω equals ωm, the two exponentials cancel, and the integral is
proportional to Sm(t = 0) and therefore to the metabolite content.

3the constant of proportionality is complex since the coil is sensitive to the change of the magnetization
rather than the magnetization itself, but that is a detail in this context.
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In summary, the precession causes a linear phase variation φ = ωmt along the time
axis, i.e. a phase roll (the wavy pattern above). This can for each metabolite
be refocused by multiplication with a complex exponential in the Fourier inte-
gral, which simultaneously dephase other metabolite signals, if present. Integra-
tion quantifies the refocused component, and eliminates other contributions. This
insight into the inner workings of the Fourier transform is very useful in many
contexts, including imaging. The concept of phase rolls is equally important.

The signal S(t) =
∑

m Sm(t = 0) exp(−iωmt) was here expressed as a sum over
metabolites oscillating at discrete frequencies. More generally, a continuum of
frequency components may be present, e.g., if there is field variation. The total
signal is then alternatively described as an integral over a frequency distribution,
S(t) =

∫
S(ω, t = 0) exp(−iωt) dω.

In brief, chemical shift gives rise to a phase roll along the time axis. This is
refocused (un-rolled) by the complex exponential in the Fourier integral when the
spectrum is calculated. The integral evaluated at a metabolite frequency (the peak
height) will be proportional to the metabolite content, but will also depend on the
relaxation time (remember that only the beginning of the FID was shown above).

3. Next, imaging is considered, i.e., measuring the spatial distribution of transversal
magnetization, Mxy(r). For this we need to introduce the concept of gradients.
Scanners are equipped with three “gradient coils” that cause linear field variation
along the x, y and z direction, respectively. A combination of gradient fields
is itself just a linear field variation in some slanted direction. Using the gradient
coils, we can introduce linear field variations in any direction we wish. The gradient
field adds onto whatever field variation that may already be present. The latter
variation is assumed zero in the following (perfect shim), and we will also assume
initially that only water gives significant signal.

A gradient from the
patient’s left to right
side. All nuclei within
the shown sagital slice
experience the same field,
and therefore have the
same Larmor frequency.
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4. During excitation and before any gradient is applied, the nuclei will be rotated
equally by the RF field (assumed homogeneous), and the local transversal magne-
tization therefore ends up in the same direction everywhere. We say that it is “in
phase” across the sample, and the signal immediately after excitation will there-
fore be strong and reflecting the total proton content, since all contributions to the
total magnetization are aligned.4 The corresponding recorded signal contains no
spatial information, however, and we therefore need gradients to provide spatial
discrimination. Slice selection is a simple and well-known way to reduce the 3D
imaging problem to a 2D problem: We turn on the gradient shown above during
excitation. Only nuclei on resonance are affected significantly by radio waves, so
by sending such at the Larmor frequency of the nuclei in the shown sagital slice, it
is possible to excite only these. We choose to rotate the nuclei within the slice 90
degrees, as before, and switch the slice selection gradients off at a time after exci-
tation where all nuclei in the slice are “in phase”, i.e., point in the same transversal
direction. With the B0-field along the body, they may at time zero point toward
the nose, for example, and they will subsequently precess in phase until we apply
more gradients. Much more can be said about slice selection, but the focus is here
on other aspects of imaging, so we hurry on.

5. Right after excitation of the slice, the local contributions to the magnetization
are aligned as described above. When another gradient is applied in-plane after
excitation, there will be a linear field variation across the patient, so the nuclei
will start precessing at different frequencies along the direction of the gradient.
We can apply this gradient in the direction from neck to nose, for example, and
after excitation of the sagital slice. The nuclei will now dephase in a controlled
way: Neighboring nuclei feel almost the same field whereas nuclei far apart are
rotated quite differently, and end up in opposite directions, for example. To be
specific, a spatial phase roll is accumulated, i.e., a linear phase variation along
the direction of the applied gradient. This is similar to the temporal phase roll
exp(−iωt) described above for spectroscopy.

y

The spatial phase variation can be described as exp(−i2πkyy) for a gradient applied
along the y-axis, e.g., a linear field variation from neck to nose. The extra constant
2π only appears to enforce a simple relation between the wavelength λy of the phase
roll, and the constant ky = 1/λy. We notice that the phase factor is indeed periodic
in y and unchanged whenever λy is added to y (2π rotation corresponds to 360◦).

4Not all nuclei are aligned but the magnetizations from different local nuclear ensembles having essen-
tially experienced the same field are aligned, i.e. the local isochromate net magnetizations.
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Figure 1: The structure of k-space which is a (kx, ky)-coordinate space where each point corre-
spond to a particular phase roll pattern, here indicated by color coded phase images
(phase angle mapped to color). The background color in the large image indicates
the measured RF signals (Fourier coefficients W (k)) for a particular patient (corner)
after the phase roll patterns are refocused one by one using gradients. k-space is a
book-keeping tool used to keep track of the phase roll patterns needed to do imag-
ing: We need to measure the MR signal W (k) for each of the phase roll patterns k
corresponding to the shown central region of k-space. The more of k-space we cover,
the more detailed will the resulting MR image be.

A phase roll is characterized uniquely by its wave length and the direction of it.5

A general phase roll in any direction can be described as exp(−i2πk · r), i.e,. a
phase (precession angle) that varies linearly in direction of a vector k, and with a
wavelength 1/|k|. The vector k thus describes the phase roll pattern created by
application of gradients uniquely. Right after excitation, k is zero since no nuclei
are yet dephased by gradients. When gradients are applied, k changes since the
phase roll changes.

As long as the gradient field is active, the phase roll will change, and therefore
also the k-vector. Specifically, the wavelength will become progressively shorter
if a constant gradient is applied after excitation (the wavelength of the phase roll
is the distance between repetitions of the wavy pattern). To see the phase roll
forming, go see https://www.youtube.com/watch?v=qXhQhgvpRU0.

5Except for a spatial shift controlled by a complex coefficient later multiplied onto the phase roll.
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For a homogeneous substance, application of a gradient that causes several full
phase rolls (rotations) along the gradient axis will leave almost equally many nuclei
pointing in all transversal directions. The coil measures the contribution from all
nuclei, i.e. the spatial integral, which plays the same role as the temporal integral
experienced earlier. Hence the signal is suppressed (spoiled) by phase rolls, and it
may seem that little is gained in terms of getting spatial information. The signal,
however, depends on the structure of the object, and will remain strong if the
structure matches the phase roll (striped patient). Specifically, what is measured
after a phase roll is created, is the corresponding spatial Fourier component, i.e.
the “stripedness” of the patient in the scanner for a particular stripe pattern (phase
roll). The stripe pattern is selected via the gradient direction and the duration
of the gradient, if it is a constant gradient. More generally, the stripe pattern
depends on the entire gradient (and RF) history since excitation.

To understand what is meant by “stripedness”, we note that phase roll patterns
appear striped when the phase of the transversal magnetization is color-coded on
a gray-scale so that, e.g., x-magnetization is colored black, and −x-magnetization
is colored white. The mentioned “stripe patterns” above should be interpreted in
that sense, i.e., as phase roll patterns, which can indeed graphically be represented
as wavy stripe patterns.

6. On the way to establishing that the stripedness is indeed measured, we now turn
to the Fourier theorem, which roughly can be formulated as follows: Any spatial
function can be expressed as a weighted sum of phase roll patterns, or in our case,
any complex image can be represented as a weighted sum of stripe patterns (magic,
but a simple argument is given towards the end of the text). This is specifically
true for the transversal magnetization distribution resulting from excitation (before
application of any gradients), Mxy(r) =

∑
kW (k) exp(i2πk · r), where W (k) are

the weighting factors for phase rolls identified by k. The excitation may possibly
be followed by some contrast preparation, e.g. a relaxation period that will change
Mxy and therefore the weights, but the general expression above still applies. The
equation expresses that whatever the spatial distribution of magnetization is, it
can be perceived as a sum of phase rolls. These are pre-existing in the sense that
they are not created by imaging gradients. They arose as conceptual, but can be
perceived as very real, which the following discussion will show.

7. In all relevant cases, the sum above is well approximated by a finite sum of low-
frequency phase roll patters, i.e., a sum over k-vectors in the central region of
k-space. The Fourier theorem tells us that measuring W (k), i.e., the stripedness
of the patient for all relevant stripe patterns (phase rolls) is as good as measuring
Mxy(r) itself. If we know W (k) we can get to the latter by calculating a weighted
sum of stripe patterns, where the measured stripedness is chosen as the weighting
factor. In other words, the similarity of the patient to a particular stripe pattern is
chosen as the weighting factor of that stripe pattern when the image is calculated.
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We now just need to establish that we can indeed measure the stripedness W (k)
of the patient, and we are almost there: Initially it was argued that a phase
roll along the time axis (caused by chemical shift) can be refocused by means
of multiplication with an opposite phase roll, and that subsequent integration
over time gives a measure of the corresponding metabolite content. Similarly, the
Fourier expansion above describes the magnetization distribution that we want to
image, as a weighted sum of phase rolls that we can each refocus one at a time to
measure the coefficients W (k). We have learned that gradients create phase rolls,
but similarly they can refocus the conceptual pre-existing phase rolls appearing in
the Fourier expansion.

The challenge of separating metabolite signals in spectroscopy is replaced by a chal-
lenge of separating out spatial components mixed since the receiver coil measures
only the total transversal magnetization within the coil volume. When analyzing
the measurements, we single out spectral and spatial components using the same
trick: In spectroscopy, the phase rolls that were created by chemical shift were re-
moved mathematically. In imaging, the conceptual phase rolls were removed with
gradients to measure specific Fourier components, but need to be reintroduced to
form images: Once the Fourier coefficients W (k) are measured by refocusing the
conceptual phase rolls in the Fourier expansion individually using gradients, we
use that same Fourier expansion to calculate the image. This is called image re-
construction, and is seen to involve multiplication with complex exponentials and
integration, as for spectroscopy.

8. The principles above were described for slice-selective 2D imaging to ease visualiza-
tion. In the math, however, we did not use this, and the Fourier theorem applies
in more dimensions. The expansion to 3D imaging is therefore mathematically
straight-forward, and the phase rolls are then 3D. Instead of stripe patters, the
corresponding graphical representation will be stacks of equidistant planes sepa-
rated by the wavelength. The planes can be oriented in any direction, and each
such stack are represented by a single point in 3D k-space (kx, ky, kz).

We can conclude even more, in fact. Spectrospic imaging is a measurement pro-
viding a full spectrum for each position in an imaged volume (e.g. a slice). In
principle, this requires a kind of movie, where the frame rate is so high that the
precession can be followed, and the metabolites therefore be identified. An FID
per image voxel is in other words required. Acquiring such images at slightly dif-
ferent sampling times indeed allows for spectroscopic imaging, but an extension
of the arguments above shows that we have much more flexibility. We have seen
that chemical shift has the same effect as a gradient creating phase rolls in space:
It creates a phase roll in time, and thus acts as a temporal gradient. We have
also learned that a sum of gradients is itself just a gradient, and this is true, even
if it is a gradient in a mix of spatial and temporal dimensions. With no further
argument, we can conclude that if we manage to map the signal not only in k-
space, but also the time evolution, i.e. W (kx, ky, kz, t), then we can reconstruct
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spatially resolved spectra S(x, y, z, ω) by adding together phase rolls in a 4D space.
We need not cover this (k, t)-space in a way that invites calculation of a movie,
as described above. We just need to sample it critically, i.e. fulfill the Nyquist
criterium everywhere. We kan limit that space to fewer dimensions by doing slice
selection eliminating one spatial dimension, e.g., x for a sagital image. The re-
maining dimensions, (ky, kz, t), can for example be covered slicewise, so one slice
of (k, t)-space, (kz, t), is covered per excitation. This is known as echo planar
spectroscopic imaging.

9. The Fourier theorem was crucial in the argument above, and it may seem unlikely
that any image can indeed be expressed as a weighted sum of stripe patterns
corresponding to oscillatory functions, each oscillating around 0. You can possibly
convince yourself by following this train of thought: Imagine gradually adding
many such stripe patterns together, where each of them is chosen to be bright
in one particular point, e.g., the middle, but where wavelength and orientation
of stripes are chosen randomly. The more stripe patterns you add together, the
brighter will the chosen point be, whereas the intensity in all other points will
fluctuate randomly, depending on which stripe pattern you happen to add last.
You will therefore end up with a bright spot, and a backgrond that is dark in
comparison. Since you have now constructed an image of any single point by
calculating a weighted sum of phase roll patterns, you can do much more. You
can construct any image point by point, and add all the mixes for different points
together subsequently. You then have a full image constructed as a sum of phase
roll patterns.
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